Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microvasc Res ; 151: 104612, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839527

RESUMO

BACKGROUND AND OBJECTIVE: Literature has reported that circular RNAs (circRNAs) are crucially associated with diabetic retinopathy (DR). Furthermore, circEHMT1 has been identified to maintain endothelial cell barrier function. This study aimed to investigate the mechanisms that regulate aberrant circEHMT1 expression and its role in the pathogenesis of DR. METHODS: In this study, retinal microvascular endothelial cells were exposed to a high glucose (HG) environment, and subsequently, tube formation and intercellular junction proteins were evaluated. Furthermore, the biological functions of circEHMT1 and its potential regulatory factor, eIF4A3, in microvascular endothelial cells under HG conditions were also assessed. In addition, the regulatory role of eIF4A3 on circEHMT1 expression was confirmed. Moreover, to elucidate the in vivo functions of eIF4A3 and circEHMT1, streptozotocin (STZ) was used to establish a DR model in rats. RESULTS: It was revealed that HG condition decreased circEHMT1 and eIF4A3 expressions and reduced ZO-1, Claudin-5, and Occludin levels in retinal microvascular endothelial cells. Furthermore, it was observed that eIF4A3 could regulate the expression of circEHMT1. Overexpression of eIF4A3 or circEHMT1 under HG conditions improved endothelial cell injury and decreased tube-formation ability. Additionally, in the DR rat model, eIF4A3 overexpression restored circEHMT1 levels and ameliorated retinal vasculature changes. CONCLUSION: Altogether, eIF4A3 regulates circEHMT1 expression, thereby affecting microvascular endothelial cell injury and tube formation. Further understanding the regulatory effect of eIF4A3 on circEHMT1 may provide novel therapeutic targets for DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Ratos , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/metabolismo , Retina/metabolismo , Vasos Retinianos/patologia
2.
Surv Ophthalmol ; 68(4): 746-758, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36854372

RESUMO

Severe corneal injury can lead to a decrease in light transmission and even blindness. Currently, corneal transplantation has been applied as the primary treatment for corneal blindness; however, the worldwide shortage of suitable corneal donor tissue means that a large proportion of patients have no access to corneal transplants. This situation has contributed to the rapid development of various corneal substitutes. The development and optimization of novel hydrogels that aim to replace partial or full-thickness pathological corneas have advanced in the last decade. Meanwhile, with the help of 3D bioprinting technology, hydrogel materials can be molded to a refined and controllable shape, attracting many scientists to the field of corneal reconstruction research. Although hydrogels are not yet available as a substitute for traditional clinical methods of corneal diseases, their rapid development makes us confident that they will be in the near future. We summarize the application of hydrogel materials for various types of corneal injuries frequently encountered in clinical practice, especially focusing on animal experiments and preclinical studies. Finally, we discuss the development and achievements of 3D bioprinting in the treatment of corneal injury.


Assuntos
Lesões da Córnea , Transplante de Córnea , Animais , Humanos , Hidrogéis/uso terapêutico , Córnea/cirurgia , Lesões da Córnea/patologia , Lesões da Córnea/cirurgia , Cegueira/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...